

Life cycle assessment of fish feed for oil alternatives - environmental impact of microalgae, rapeseed and fish oil

Beate Zlaugotne, <u>Jelena Pubule</u>, Fabian A. Diaz Sanchez, Dagnija Blumberga

Biosystems Engineering 2023

Non-Food Organic Resources-based feeds optimised for salmon until postsmolt stage (NON-Fôr)

AIM OF PROJECT

To investigate:

- 1. The quality of the ingredients
- 2. The physical quality of pellets produced by incorporating the third generation ingredients and to provide suggestions for quality improvement that can be adopted in the commercial production of these feeds
- 3. The potential of algae oil as replacer of fish oil at start feeding and during smoltification and the potential of insect meals as replacers of fish meal in post smolt feeds
- 4. The environmental impact of the new feeds

7			0
20	27	20	23

SUSTAINABILITY OF AQUACULTURE

- Over 2015-2020, total annual world aquaculture production grew by 3,3% per year
- Aquaculture is one of the fastest-growing food production sectors, which can provide high-quality protein for human consumption
- As a result, the global demand for aquaculture products is increasing, but its development raises concerns about the impact on the environment
- Sustainable growth of aquaculture is possible by reducing dependence on marine resources

COMPOSITION OF FISH FEED 1990-2016

- Marine protein sources
- Marine oil
- Plant protein sources
- Plant oil
- Carbohydrate sources
- Micro ingredients

5

SUSTAINABLE ALTERNATIVES

- Fish oil is traditionally used as the main lipid component in fish feed to provide the required fatty acids, replacing fish oil with an alternative oil is difficult due to the required fatty acids in fish feed
- The aquaculture sector uses plant-based raw materials to replace less sustainable raw materials in feed production
- Soybean, linseed, rapeseed, sunflower, palm and olive oils are popular vegetable oils which are often used in fish feed
- Microalgae oil can replace fish oil in feed because have a high lipid content and rich in essential fatty acids

LIFE CYCLE ASSESSMENT (LCA) STEPS

OIL ALTERNATIVE – MICROALGAE OIL

- Advantages of microalgae oil is fast growth rate, high antioxidant and colour content, and availability and also, microalgae absorb CO₂ and removal efficiency of CO₂ is 5% to 70% and thus produce O₂ during photosynthesis
- Use of microalgae oil as lipids are limited by high production costs

OIL ALTERNATIVE – RAPESEED OIL

- Rapeseed oil is a suitable lipid source for salmonids, freshwater and marine fish as it is rich in linoleic acid and oleic acid
- Replacing fish oil with vegetable oil reduces
 costs, and vegetable oils
 have high availability and
 better economic value

OIL ALTERNATIVE – FISH OIL

- Fish oil is obtained from pelagic fish and is used in high-energy fish feed and
 12.2 kg of fish are needed to produce 1 kg of fish oil
- Traditional aquaculture fish oil is popular and widely used, but it impacts the environment and reduces biological diversity

LCA IMPACT ASSESSMENT RESULTS

Impact category	Unit	Microalgae oil	Rapeseed oil	Fish oil
Climate change	kg CO _{2 eq}	8.43E+00	1.68E+00	1.36E+00
Climate change - Biogenic	kg CO _{2 eq}	3.52E-01	1.22E-03	1.14E-03
Climate change - Land use		1 005 01	2 165 02	2.065.02
and LU change	kg CO _{2 eq}	1.902-01	2.10E-03	2.00E-03
Ozone depletion	kg CFC11 eq	1.12E-06	1.93E-07	2.10E-07
Human toxicity, cancer	CTUh	5.56E-09	3.08E-09	8.98E-10
Human toxicity, non-cancer	CTUh	1.45E-07	1.83E-07	1.40E-08
Particulate matter	disease inc.	4.42E-07	2.91E-07	1.45E-07
Ionising radiation	kBq U ²³⁵ _{eq}	1.23E+00	9.52E-02	6.27E-02
Photochemical ozone	kg NMVOC	2.37E-02	6.67E-03	1.19E-02
Acidification	eq mol H+	5 16E-02	1 28E-02	1 75E-02
Futrophication terrestrial		1.54E-01	4.20L-02	1.75E-02
Eutrophication, terrestrial	ka P	1.34E-01 3.34E-03	5.11E-04	4.43E-02
Eutrophication, meshwater	kg N	1 75E-02	4.07E-02	4 16E-03
Ecotoxicity freshwater	CTUe	2 19E+02	5 50E+01	1 46F+01
Land use	Pt	4 71E+02	1.87E+02	4.05E+00
Water use	m ³ depriv.	1.07E+01	1.22E+00	6.21E-01
Resource use, minerals and metals	kg Sb _{eq}	9.35E-05	1.29E-05	1.03E-05
Resource use, fossils	MJ	1.12E+02	1.28E+01	1.93E+01

Pt is the unit of the eco-indicator, and 1 Pt is representative of one thousand of the annual environmental load of an average European citizen

LCA SENSITIVITY ANALYSIS

- Sensitivity analysis was for Microalga oil alternatives – in one case, for production, it was used electricity in the US and in another case was used electricity in Norway
- If production takes place in Norway, the impact of the electricity used has less impact on the environment than if production takes place in the US using US electricity

Pt is the unit of the eco-indicator, and 1 Pt is representative of one thousand of the annual environmental load of an average European citizen

CONCLUSION

- Results from LCA shows that the largest impact is from microalgae oil, than rapeseed oil and folowed by fish oil
- The largest impact of microalgae oil alternative is from glucoses and electricity consumption, impact can be reduced by using a greener electricity mix and more sustainable glucoses
- For rapeseed oil alternative largest impact is from rapeseed, and it is because of intensive or extensive cultivation processes and to reduce the impact it is better to choose organically grown rapeseed
- For fish oil largest impact is from using fresh landed anchovy and to make a less impact it is possible to use more fish residues as main input for fish oil production
- The results show an overall picture of the impact of oil alternatives used in fish feed production

Riga Technical University

CONCLUSION

- In the literature on the studies carried out comparing fish oil with algae oil, the result is that algae oil has a less impact on the environment
- The difference in the results is because the literature used a different method for the impact on the environment measuring and also the functional unit was the amount of EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid)
- The study can be further developed by comparing fish feeds where there are changes in the ratio of ingredients
- The obtained results show the impact of oils alternatives on the environment, but the quality of the feed is important in the production of fish feed, both in terms of physical properties and composition
- These characteristics also affect the growth of the fish and how valuable the fish is in the human diet

This work was supported within the framework of the European Regional Development Fund project No. 1.1.1.5/17/I/002 "Integrated national level measures for strengthening interest representations for research and development of Latvia as part of European Research Area" by funding project No. 23-11.17e/21/165 "Non-Food Organic Resources based feeds optimised for salmon until post-smolt stages" (NON-For).

Institute of Energy Systems and Environment

Prof., Dr.sc.ing. Jelena Pubule jelena.pubule@rtu.lv

