

Supported by:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

based on a decision of the German Bundestag

Assessment of investment needs and gaps in relation to the 2030 climate and energy targets

Ingmar Juergens and David Rusnok gbr Advisors in co-operation with Carlotta Piantieri (IKEM)

OUTCOME

Strengthened skills of the public sector actors and operators of public financial support schemes to address the investment challenge of meeting 2030 energy and climate targets.

Supported by:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

IKEM

Energy Union and the 2030 targets (the EU's "NDC")

European Climate Initiative EUKI IKEM

At EU level: investment challenge of reaching the EU's 2030 targets

EUR 209 bn per year 2021-2030 in key sectors

DIW BERLIN

Investment Needs and Gap Analysis (INGA) and the project's analytical framework

Time horizon

Ingmar Juergens and David Rusnok gbr advisors

IKEM

Investment Gap and Need Analyses: Overview, selected Models

	В	Building bocks		
Study	Socioeconomic factors	Energy markets	Technologies / Innovation needs	Model-specific output features
DENA (2018)	Exogenous	DIMENSION+	Exogenous	GHG emissions per sectors
BCG (2018)	VIEW model by Prognos	Different Prognos models	Bottom-up Substitution Cost Curve	Sectorial cost-efficient and low-carbon technologies and investment needs.
Frauenhofer (2015)	Exogenous	REMod-D	Exogenous	System composition including cost analysis
IEA (2017)	Exogenous	WEM	REmap	Energy flows by fuel, investment needs and costs, carbon dioxide (CO2) and other energy-related GHG emissions, and end-user prices.
OECD (2017)	Yoda model + Oxford GE model	Oxford GE model	Exogenous	SR and LR economic growth, potential output. GEM enables sector-level analysis.
IRENA (2015)	Exogenous	Exogenous	REmap	Supply substitution cost curve. Current cost of technologies .
EC Impact Assessments (2017)	All the economy is mode	elled endogenou	sly	Investment needs figures and detailed assessment of relative economic impacts.
Federal Ministry for the Environment, Nature Conservation and Nuclear Safety	European Climate Initiative EUKI		Ingmar Ju	ergens and David Rusnok gbr advisors

Ingmar Juergens and David Rusnok gbr advisors

based on a decision of the German Bundestag

IEA World Energy Model

Determinants of final energy demand

Drivers

- Socio-economic variables

European

- End-user prices

Activity variables and related energy services

Technologies that satisfy specific energy services

Ingmar Juergens and David Rusnok gbr advisors

based on a decision of the German Bundestag

Supported by:

IRENA 2016 REmap

Technology cost difference per unit of final energy consumed if one replaces conventional energy technologies assumed to be in place in 2030 in the Reference Case with renewable energy (RE) technologies.

TECHNOLOGY SUBSTITUTION COST MODEL

Supported by:

and Nuclear Safety

Climate Initiative

Ingmar Juergens and David Rusnok gbr advisors

based on a decision of the German Bundestag

Federal Ministry for the Environment, Nature Conservation

Preliminary
analysis for
illustrative
purposes only!

ID	Study	Scenario	Time Period	P.a. Min	P.a. Max	Total Min	Total Max
				Billion€	Billion€	Billion €	Billion €
2050	- 80 per cent scenar	rio					
1	DENA	80%	2018-50	33.3	54.6	1064	1746
2	BCG	80%	2015-50	28.6		10	00
3	Frauenhofer	80%	2015-50	24.9	38.4	873	1343
2050	– 90/95 per cent sc	enario					
1		05%	2018-50	3/1 3	58.3	1008	1866
	DENA	7370	2010-30	54.5	50.5	1070	1000
2	BCG	95%	2015-50	50.6		17	70
3	Frauenhofer	95%	2015-50	49.6_		173	35
2030	targets						
4	Prognos	55%	2018-30	20.0	22.5	240	270

Investment Gap and Need Analyses: Studies investigating total (additional) costs

Supported by:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

Ingmar Juergens and David Rusnok gbr advisors

IKEM

Discussion (I)

What can we learn from the different models/ tools/approaches?

- How to use these models' outputs for national analysis?
- National models already available? Sector-specific models?

Climate Initiativ

Are there analysis and modeling gaps?

Corresponding project deliverables driven by user needs

Do national institutions **assess investment needs internally or by contracting** studies/assessments?

- Model overview and characterisation seems useful in any case
- Workshops, webinars and slide decks to understand which models (etc.) are available and can be put to which specific use or address which specific knowledge gap or policy question
- Direct Support: Review of and inputs to national institutions' own analysis

based on a decision of the German Bundestag

and Nuclear Safety

Federal Ministry for the Environment, Nature Conservation

Supported by:

DISCUSSION (II)

Toward capital raising strategies:

- Where are the challenges? Public, private (households, corporates), in which sectors?
- What are the key barriers and drivers?
- Which barriers and drivers can be addressed by policy?
- Where to focus public financing?

IKEM

Capital Raising Plan - Relevance and definition in the context of the EUKI project

- Is required to develop National Energy and Climate Plans.
- Is a strategy to match financing demand to finance investments to achieve 2030 climate and energy targets in the Czech Republic with national / international financing supply and to mobilise private capital.
- Is necessary, because market imperfections (barriers) prevent matching financing demand and supply.
- Must be embedded in the overall country strategy for reaching the energy and climate goals.

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

Supported by:

Ingmar Jürgens & David Rusnok GbR Advisors

Capital Raising Plan

At what level of the economy do we define a strategy for the Latvia?

Macro approach

Economy wide CRPs, in order to improve framework conditions e.g. for the private sector

Meso approach

Sector or technology focus CRPs, in order to improve framework conditions for investments in specific sectors / technology

Micro approach

Project specific CPs, in order to raise capital for a specific project

Capital Raising Plan - Possible Protype CPRs

Macro approach

Prototype CPR: Recommendations for policy makers in Latvia to augment saving and investment rates

limate Initiativ

Meso approach

Prototype CPR:

Handbook and tools for policy makers in Latvia to identify relevant barriers and appraise policy instruments to improve framework conditions in selected sectors Micro approach

Prototype CPR: Business-plan and project calculation tool for project developers to present climate friendly project to local / multilateral bank and / or equity investor

Ingmar Jürgens & David Rusnok GbR Advisors

based on a decision of the German Bundestag

and Nuclear Safety

Federal Ministry for the Environment, Nature Conservation

Supported by

Capital Raising Plan - First draft Concept for the Meso-CRP

based on a decision of the German Bundestag

Supported by

Discussion

- 1 Focus on meso-level?
- 2 Relative importance of investment needs and capital raising strategy in the context of the NECP
- 3 Mix of instruments (financial instruments, market-based policies, regulation and standards) for raising capital differs between sectors, as well as relative importance of demand versus supply (of financing)
- 4 How deep to go in the assessment of policy effectiveness (in terms of private capital mobilisation)?

IKEM

A short excursion to renewable energy policies and financing costs...

Supported by:

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety

IKEM

• Financing costs determine competitiveness of solar&wind

• Cost of learning investment in wind and solar dominates debate but is sunk.

DIW Berlin Calculations based on BP Statistical Review of World Energy; Energy Statistics for the EU-28; Bundesverband Solarwirtschaft e. V.; IEA; European Wind Energy Association; Bundesamt für Wirtschaft und Ausfuhrkontrolle, first published in Energy Journal (forthcoming)

Wind power policies in the EU in 2014

May and Neuhoff (2017): Financing Power: Impacts of Energy Policies in Changing Regulatory Environments. DIW Discussion Paper

Policies can (i) reduce and (ii) re-allocate risks

Estimation results: Impact of policies on financing costs

Table	2: OLS es	timation re	esults		
	(1) Level	(2) Level	(3) Log	(4) Log	
Dep. var: risk premium	Lever	Level	LOS	Dog	
Sliding feed-in premium	-0.290		-0.176		
Tradable green certificates	(0.301) 1.209^{**}	1.306^{**}	0.269**	0.328***	
No policy	(0.417) 2.274^{***}	(0.389) 2.341^{***}	0.453***	0.494***	
Retrosp. changes	(0.438) -0.139	(0.421) -0.082	(0.097) -0.048	(0.087) -0.013	Green certificate
Tenders	(0.366) 1.030	(0.361) 0.887	(0.088) 0.304	(0.083) 0.217	with an increase in
Equity investor	(0.608) -0.266	(0.575) -0.293	(0.156) -0.048	(0.130) -0.065	financing costs by 1.2-
Utility employee	(0.323)	(0.320)	(0.080)	(0.074)	percentage points
D l	(0.539)	(0.528)	(0.126)	(0.118)	
Banker	-0.708 (0.507)	(0.535)	-0.263 (0.192)	-0.275 (0.212)	
N	53	53	53	53	

Robust standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001

Fixed feed-in tariff and the Belgian and Romanian TGC systems with significant price floors are the baseline policy. In columns 2 and 4, also the feed-in premium is in the base-

line. Academic/Consultants are the baseline respondent group.

Cost decline of large scale photovoltaics

May, Jürgens and Neuhoff (2017): Renewable energy policy: risk-hedging is taking center-stage

Example: RE support policies and financing costs of onshore wind energy across the EU (WACC, in %)

- Estimation of policy impacts on investors' financing costs
- We estimate the effect of support
 policies on the risk premium to control
 for country-specific effects of generally
 risky investment environments
- Green certificates increase investors' financing costs by about 1.2 percentage points.
- Long-term contracts increase
 counterparties' re-financing costs; for the
 average of large EU utilities by 20% of
 the value of the renewable energy
 investment.

IKEM

Ingmar Jürgens & David Rusnok GbR Advisors

Supported by:

based on a decision of the German Bundestag

Ingmar Juergens and David Rusnok gbr advisors

in co-operation with Carlotta Piantieri (IKEM)

THANK YOU!

