

Motivations behind the review of the assessment of the 2030 investment challenge

On the basis of our latest report**** it will be possible to develop a better understanding of:

- how to capture the 2030 investment challenge and the related investment needs
- how to assess them
- · what to pay attention to when interpreting the results of such assessments

The review of the "German case" is a concrete **basis for starting the discussions** with decision makers, desk officers, analysts and other stakeholders.

*****download at www.ikem.de

JUERGENS & RUSNOK ADVISORS

		Building bocks	Model-specific	
Study	Socioeconomic factors	Energy markets	Technologies/ Innovation needs	output features
OECD (2017)	Yoda model + Oxford GE model	Oxford GE model	Exogenous	Economic growth, potential output. GEM enables sector-level analysis.
IEA (2017)	Exogenous	WEM	REmap	Energy flows by fuel, investment needs and costs, carbon dioxide (CO2) and other energy-related GHG emissions, and end-user prices.
	Exogenous			Supply substitution cost curve.
IRENA (2015)		Exogenous	REmap	Current cost of technologies (no learning).
DENA (2018)	Exogenous	DIMENSION +	Exogenous	GHG emissions per sector.
BCG (2018)	VIEW Model by Prognos	Different models by Prognos	Bottom Up Substitution Cost Curve	Sectoral cost-efficient and low carbon technologies related investment needs.
Frauenhofer-ISE (2015)	Exogenous	REMod-D	Exogenous (e.g. expansion capacities of technologies)	System composition including cost analysis.
Prognos et. al. (2018)	ISI_Macro Model	Exogenous	Cost-Benefit Tool (UBA)	Primary effects (direct economic and environmental impacts, investment); Secondary effects (e.g. employment)
European Commission (2017)	All the economy is mode	lled endogenously	Investment needs figures and detailed assessment of relative economic impacts.	

Results for Germany

Studies investigating total (additional) investment costs in relation to different GHG emission reduction targets

ID	Study	Time	Investment needs p.a.		GHG reduction target		
					Reference in square		
	Authors	Period	Min. Bn €	Max. Bn €	brackets		
2050	2050 – 80 per cent targets						
1	DENA (2018)	2018-50	+33.3	+54.6	-80% CO2 [-62%]		
2	BCG (2018)	2015-50	+2	8.6	-80% CO2 [-61%]		
3	Fraunhofer-ISE (2015)	2015-50	+24.9	+38.4	-80% CO2 [not stated]		
2050	2050 – 90/95 per cent targets						
1	DENA (2018)	2018-50	+34.3	+58.3	-95% CO2 [-62%]		
2	BCG (2018)	2015-50	+50.6		-95% CO2 [-61%]		
3 Fraunhofer-ISE (2015)		2015-50	+49.6		-90% CO2 [not stated]		
2030 – 55 per cent targets							
4	Prognos et. al. (2018)	2018-30	+20.0.	+22.5	-55% CO2 [-35%]		

INGA for Renewable Energy What do we know today? Selected studies in the renewable energy sector, Germany ID Study Time Investment needs p.a. Reduction target Authors Period Min. bn € Max. bn € Ref Scenario in square brackets 2050 GHG targets BCG and Prognos 2015-50 +4.2 -80.0% CO2 [61%]

	BCG and Prognos				
2	(2018)	2015-50		+9.5	-95.0% CO2 [61%]
2	GWS (2018)	2000-50		+12.8	-80.0% -85.0% CO2 [none]
4	2030 GHG targets				
5	IRENA (2015)	2010-30		+6.9	-55% CO2 [-44%]
6	Prognos et al (2018)	2018-30	+6.7	+9.2	-55% CO2 [-35%]

INGA for Building Sector

What do we know today? Selected studies in the building sector, Germany

ID	Study	Time	Investment needs p.a.		Reduction target
	Authors	Period	Min. bn €	Max. bn €	Ref Scenario in square brackets
1	IFEU et al (2018)	2017-50	+3.4	+7.7	-87.5% CO2 [same]
2	DENA (2017)	2015-50	+12.6	+25.4	-80.0% CO2 [60%]
2	DENA (2017)	2015-50	+12.9	+29.3	-95.0% CO2 [60%]
3	IFEU and Beuth (2017)	2011-50	+12.8	+21.9	No target scenario
4	IFEU et al (2015)	2014-50	+10 ^b	+20 ^b	-80% energy demand [-72%] ^C
5	BMWi (2017)	2014-50	<	< 12 °	-80% energy demand [-59%] ^C
6	BMWi (2015)	2008-50	+2.1	+6.4	-80% energy demand [-61%] ^C